Day 14: Restroom Redoubt

Megathread guidelines

  • Keep top level comments as only solutions, if you want to say something other than a solution put it in a new post. (replies to comments can be whatever)
  • You can send code in code blocks by using three backticks, the code, and then three backticks or use something such as https://topaz.github.io/paste/ if you prefer sending it through a URL

FAQ

  • gedhrel@lemmy.world
    link
    fedilink
    arrow-up
    4
    ·
    13 days ago

    Haskell, alternative approach

    The x and y coordinates of robots are independent. 101 and 103 are prime. So, the pattern of x coordinates will repeat every 101 ticks, and the pattern of y coordinates every 103 ticks.

    For the first 101 ticks, take the histogram of x-coordinates and test it to see if it’s roughly randomly scattered by performing a chi-squared test using a uniform distrobution as the basis. [That code’s not given below, but it’s a trivial transliteration of the formula on wikipedia, for instance.] In my case I found a massive peak at t=99.

    Same for the first 103 ticks and y coordinates. Mine showed up at t=58.

    You’re then just looking for solutions of t = 101m + 99, t = 103n + 58 [in this case]. I’ve a library function, maybeCombineDiophantine, which computes the intersection of these things if any exist; again, this is basic wikipedia stuff.

    day14b ls =
      let
        rs = parse ls
        size = (101, 103)
        positions = map (\t -> process size t rs) [0..]
    
        -- analyse x coordinates. These should have period 101
        xs = zip [0..(fst size)] $ map (\rs -> map (\(p,_) -> fst p) rs & C.count & chi_squared (fst size)) positions
        xMax = xs & sortOn snd & last & fst
    
        -- analyse y coordinates. These should have period 103
        ys = zip [0..(snd size)] $ map (\rs -> map (\(p,_) -> snd p) rs & C.count & chi_squared (snd size)) positions
        yMax = ys & sortOn snd & last & fst
    
        -- Find intersections of: t = 101 m + xMax, t = 103 n + yMax
        ans = do
          (s,t) <- maybeCombineDiophantine (fromIntegral (fst size), fromIntegral xMax)
                                           (fromIntegral (snd size), fromIntegral yMax)
          pure $ minNonNegative s t
      in
        trace ("xs distributions: " ++ show (sortOn snd xs)) $
        trace ("ys distributions: " ++ show (sortOn snd ys)) $
        trace ("xMax = " ++ show xMax ++ ", yMax = " ++ show yMax) $
        trace ("answer could be " ++ show ans) $
        ans
    
    • gedhrel@lemmy.world
      link
      fedilink
      arrow-up
      2
      ·
      13 days ago

      I should add - it’s perfectly possible to draw pictures which won’t be spotted by this test, but in this case as it happens the distributions are exceedingly nonuniform at the critical point.

      • gedhrel@lemmy.world
        link
        fedilink
        arrow-up
        2
        ·
        12 days ago

        Thanks. It was the third thing I tried - began by looking for mostly-symmetrical, then asked myself “what does a christmas tree look like?” and wiring together some rudimentary heuristics. When those both failed (and I’d stopped for a coffee) the alternative struck me. It seems like a new avenue into the same diophantine fonisher that’s pretty popular in these puzzles - quite an interesting one.

        This day’s puzzle is clearly begging for some inventive viaualisations.

  • sjmulder@lemmy.sdf.org
    link
    fedilink
    arrow-up
    4
    ·
    12 days ago

    C

    Solved part 1 without a grid, looked at part 2, almost spit out my coffee. Didn’t see that coming!

    I used my visualisation mini-library to generate video with ffmpeg, stepped through it a bit, then thought better of it - this is a programming puzzle after all!

    So I wrote a heuristic to find frames low on entropy (specifically: having many robots in the same line of column), where each record-breaking frame number was printed. That pointed right at the correct frame!

    It was pretty slow though (.2 secs or such) because it required marking spots on a grid. I noticed the Christmas tree was neatly tucked into a corner, concluded that wasn’t an accident, and rewrote the heuristic to check for a high concentration in a single quadrant. Reverted this because the tree-in-quadrant assumption proved incorrect for other inputs. Would’ve been cool though!

    Code
    #include "common.h"
    
    #define SAMPLE 0
    #define GW (SAMPLE ? 11 : 101)
    #define GH (SAMPLE ?  7 : 103)
    #define NR 501
    
    int
    main(int argc, char **argv)
    {
    	static char g[GH][GW];
    	static int px[NR],py[NR], vx[NR],vy[NR];
    
    	int p1=0, n=0, sec, i, x,y, q[4]={}, run;
    
    	if (argc > 1)
    		DISCARD(freopen(argv[1], "r", stdin));
    
    	for (; scanf(" p=%d,%d v=%d,%d", px+n,py+n, vx+n,vy+n)==4; n++)
    		assert(n+1 < NR);
    
    	for (sec=1; !SAMPLE || sec <= 100; sec++) {
    		memset(g, 0, sizeof(g));
    		memset(q, 0, sizeof(q));
    
    		for (i=0; i<n; i++) {
    			px[i] = (px[i] + vx[i] + GW) % GW;
    			py[i] = (py[i] + vy[i] + GH) % GH;
    
    			g[py[i]][px[i]] = 1;
    
    			if (sec == 100) {
    				if (px[i] < GW/2) {
    					if (py[i] < GH/2) q[0]++; else
    					if (py[i] > GH/2) q[1]++;
    				} else if (px[i] > GW/2) {
    					if (py[i] < GH/2) q[2]++; else
    					if (py[i] > GH/2) q[3]++;
    				}
    			}
    		}
    
    		if (sec == 100)
    			p1 = q[0]*q[1]*q[2]*q[3];
    
    		for (y=0; y<GH; y++)
    		for (x=0, run=0; x<GW; x++)
    			if (!g[y][x])
    				run = 0;
    			else if (++run >= 10)
    				goto found_p2;
    	}
    
    found_p2:
    	printf("14: %d %d\n", p1, sec);
    	return 0;
    }
    

    https://github.com/sjmulder/aoc/blob/master/2024/c/day14.c

  • JRaccoon@discuss.tchncs.de
    link
    fedilink
    English
    arrow-up
    4
    ·
    13 days ago

    TypeScript

    Part 2 was a major curveball for sure. I was expecting something like the grid size and number of seconds multiplying by a large amount to make iterative solutions unfeasible.

    First I was baffled how we’re supposed to know what shape we’re looking for exactly. I just started printing out cases where many robots were next to each other and checked them by hand and eventually found it. For my input the correct picture looked like this:

    The Christmas tree

    Picture

    Later it turned out that a much simpler way is to just check for the first time none of the robots are overlapping each other. I cannot say for sure if this works for every input, but I suspect the inputs are generated in such a way that this approach always works.

    The code
    import fs from "fs";
    
    type Coord = {x: number, y: number};
    type Robot = {start: Coord, velocity: Coord};
    
    const SIZE: Coord = {x: 101, y: 103};
    
    const input: Robot[] = fs.readFileSync("./14/input.txt", "utf-8")
        .split(/[\r\n]+/)
        .map(row => /p=(-?\d+),(-?\d+)\sv=(-?\d+),(-?\d+)/.exec(row))
        .filter(matcher => matcher != null)
        .map(matcher => {
            return {
                start: {x: parseInt(matcher[1]), y: parseInt(matcher[2])},
                velocity: {x: parseInt(matcher[3]), y: parseInt(matcher[4])}
            };
        });
    
    console.info("Part 1: " + safetyFactor(input.map(robot => calculatePosition(robot, SIZE, 100)), SIZE));
    
    // Part 2
    // Turns out the Christmas tree is arranged the first time none of the robots are overlapping
    for (let i = 101; true; i++) {
        const positions = input.map(robot => calculatePosition(robot, SIZE, i));
        if (positions.every((position, index, arr) => arr.findIndex(pos => pos.x === position.x && pos.y === position.y) === index)) {
            console.info("Part 2: " + i);
            break;
        }
    }
    
    function calculatePosition(robot: Robot, size: Coord, seconds: number): Coord {
        return {
            x: ((robot.start.x + robot.velocity.x * seconds) % size.x + size.x) % size.x,
            y: ((robot.start.y + robot.velocity.y * seconds) % size.y + size.y) % size.y
        };
    }
    
    function safetyFactor(positions: Coord[], size: Coord): number {
        const midX = Math.floor(size.x / 2);
        const midY = Math.floor(size.y / 2);
    
        let quadrant0 = 0; // Top-left
        let quadrant1 = 0; // Top-right
        let quadrant2 = 0; // Bottom-left
        let quadrant3 = 0; // Bottom-right
    
        for (const {x,y} of positions) {
            if (x === midX || y === midY) { continue; }
    
            if (x < midX && y < midY) { quadrant0++; }
            else if (x > midX && y < midY) { quadrant1++; }
            else if (x < midX && y > midY) { quadrant2++; }
            else if (x > midX && y > midY) { quadrant3++; }
        }
    
        return quadrant0 * quadrant1 * quadrant2 * quadrant3;
    }
    
    • lwhjp@lemmy.sdf.org
      link
      fedilink
      arrow-up
      2
      ·
      13 days ago

      Checking for no overlaps is an interesting one. Intuitively I’d expect that to happen more often due to the low density, but as you say perhaps it’s deliberate.

  • lwhjp@lemmy.sdf.org
    link
    fedilink
    arrow-up
    3
    ·
    13 days ago

    Haskell

    Part 2 could be improved significantly now that I know what to look for, but this is the (very inefficient) heuristic I eventually found the answer with.

    Solution
    import Control.Arrow
    import Data.Char
    import Data.List
    import Data.Map qualified as Map
    import Data.Maybe
    import Text.Parsec
    
    (w, h) = (101, 103)
    
    readInput :: String -> [((Int, Int), (Int, Int))]
    readInput = either (error . show) id . parse (robot `endBy` newline) ""
      where
        robot = (,) <$> (string "p=" >> coords) <*> (string " v=" >> coords)
        coords = (,) <$> num <* char ',' <*> num
        num = read <$> ((++) <$> option "" (string "-") <*> many1 digit)
    
    runBots :: [((Int, Int), (Int, Int))] -> [[(Int, Int)]]
    runBots = transpose . map botPath
      where
        botPath (p, (vx, vy)) = iterate (incWrap w vx *** incWrap h vy) p
        incWrap s d = (`mod` s) . (+ d)
    
    safetyFactor :: [(Int, Int)] -> Int
    safetyFactor = product . Map.fromListWith (+) . map (,1) . mapMaybe quadrant
      where
        cx = w `div` 2
        cy = h `div` 2
        quadrant (x, y)
          | x == cx || y == cy = Nothing
          | otherwise = Just (x `div` (cx + 1), y `div` (cy + 1))
    
    render :: [(Int, Int)] -> [String]
    render bots =
      let counts = Map.fromListWith (+) $ map (,1) bots
       in flip map [0 .. h - 1] $ \y ->
            flip map [0 .. w - 1] $ \x ->
              maybe '.' intToDigit $ counts Map.!? (x, y)
    
    isImage :: [String] -> Bool
    isImage = (> 4) . length . filter hasRun
      where
        hasRun = any ((> 3) . length) . filter head . group . map (/= '.')
    
    main = do
      positions <- runBots . readInput <$> readFile "input14"
      print . safetyFactor $ positions !! 100
      let (Just (t, image)) = find (isImage . snd) $ zip [0 ..] $ map render positions
      print t
      mapM_ putStrLn image
    
  • gentooer@programming.dev
    link
    fedilink
    English
    arrow-up
    3
    ·
    edit-2
    13 days ago

    Haskell. For part 2 I just wrote 10000 text files and went through them by hand. I quickly noticed that every 103 seconds, an image started to form, so it didn’t take that long to find the tree.

    Code
    import Data.Maybe
    import Text.ParserCombinators.ReadP
    import qualified Data.Map.Strict as M
    
    type Coord = (Int, Int)
    type Robot = (Coord, Coord)
    
    int :: ReadP Int
    int = fmap read $ many1 $ choice $ map char $ '-' : ['0' .. '9']
    
    coord :: ReadP Coord
    coord = (,) <$> int <*> (char ',' *> int)
    
    robot :: ReadP Robot
    robot = (,) <$> (string "p=" *> coord) <*> (string " v=" *> coord)
    
    robots :: ReadP [Robot]
    robots = sepBy robot (char '\n')
    
    simulate :: Coord -> Int -> Robot -> Coord
    simulate (x0, y0) t ((x, y), (vx, vy)) =
        ((x + t * vx) `mod` x0, (y + t * vy) `mod` y0)
    
    quadrant :: Coord -> Coord -> Maybe Int
    quadrant (x0, y0) (x, y) = case (compare (2*x + 1) x0, compare (2*y + 1) y0) of
        (LT, LT) -> Just 0
        (LT, GT) -> Just 1
        (GT, LT) -> Just 2
        (GT, GT) -> Just 3
        _        -> Nothing
    
    freqs :: (Foldable t, Ord a) => t a -> M.Map a Int
    freqs = foldr (\x -> M.insertWith (+) x 1) M.empty
    
    solve :: Coord -> Int -> [Robot] -> Int
    solve grid t = product . freqs . catMaybes . map (quadrant grid . simulate grid t)
    
    showGrid :: Coord -> [Coord] -> String
    showGrid (x0, y0) cs = unlines
        [ [if (x, y) `M.member` m then '#' else ' ' | x <- [0 .. x0]]
        | let m = M.fromList [(c, ()) | c <- cs]
        , y <- [0 .. y0]
        ]
    
    main :: IO ()
    main = do
        rs <- fst . last . readP_to_S robots <$> getContents
        let g = (101, 103)
        print $ solve g 100 rs
        sequence_
            [ writeFile ("tree_" ++ show t) $ showGrid g $ map (simulate g t) rs
            | t <- [0 .. 10000]
            ]
    
  • janAkali@lemmy.one
    link
    fedilink
    English
    arrow-up
    2
    ·
    edit-2
    13 days ago

    Nim

    Part 1: there’s no need to simulate each step, final position for each robot is
    (position + velocity * iterations) modulo grid
    Part 2: I solved it interactively: Maybe I just got lucky, but my input has certain pattern: after 99th iteration every 101st iteration looking very different from other. I printed first couple hundred iterations, noticed a pattern and started looking only at “interesting” grids. It took 7371 iterations (I only had to check 72 manually) to reach an easter egg.

    type
      Vec2 = tuple[x,y: int]
      Robot = object
        pos, vel: Vec2
    
    var
      GridRows = 101
      GridCols = 103
    
    proc examine(robots: seq[Robot]) =
      for y in 0..<GridCols:
        for x in 0..<GridRows:
          let c = robots.countIt(it.pos == (x, y))
          stdout.write if c == 0: '.' else: char('0'.ord + c)
        stdout.write '\n'
        stdout.flushFile()
    
    proc solve(input: string): AOCSolution[int, int] =
      var robots: seq[Robot]
      for line in input.splitLines():
        let parts = line.split({' ',',','='})
        robots.add Robot(pos: (parts[1].parseInt,parts[2].parseInt),
                         vel: (parts[4].parseInt,parts[5].parseInt))
    
      block p1:
        var quads: array[4, int]
        for robot in robots:
          let
            newX = (robot.pos.x + robot.vel.x * 100).euclmod GridRows
            newY = (robot.pos.y + robot.vel.y * 100).euclmod GridCols
            relRow = cmp(newX, GridRows div 2)
            relCol = cmp(newY, GridCols div 2)
          if relRow == 0 or relCol == 0: continue
          inc quads[int(relCol>0)*2 + int(relRow>0)]
    
        result.part1 = quads.foldl(a*b)
    
      block p2:
        if GridRows != 101: break p2
        var interesting = 99
        var interval = 101
    
        var i = 0
        while true:
          for robot in robots.mitems:
            robot.pos.x = (robot.pos.x + robot.vel.x).euclmod GridRows
            robot.pos.y = (robot.pos.y + robot.vel.y).euclmod GridCols
          inc i
    
          if i == interesting:
            robots.examine()
            echo "Iteration #", i, "; Do you see an xmas tree?[N/y]"
            if stdin.readLine().normalize() == "y":
              result.part2 = i
              break
            interesting += interval
    

    Codeberg Repo

  • VegOwOtenks@lemmy.world
    link
    fedilink
    English
    arrow-up
    2
    ·
    13 days ago

    Haskell

    I solved part two interactively, I’m not very happy about it

    Reveal Code
    import Control.Arrow
    import Data.Bifunctor hiding (first, second)
    import Control.Monad
    
    import qualified Data.List as List
    import qualified Data.Set as Set
    import qualified Data.Map as Map
    import qualified Data.Maybe as Maybe
    
    parse :: String -> [((Int, Int), (Int, Int))]
    parse = map (break (== ' ') >>> second (drop 1) >>> join bimap (drop 2) >>> join bimap (break (== ',')) >>> join bimap (second (drop 1)) >>> join bimap (join bimap read)) . filter (/= "") . lines
    
    moveRobot ((px, py), (vx, vy)) t = (px + t * vx, py + t * vy)
    
    constrainCoordinates (mx, my) (px, py) = (px `mod` mx, py `mod` my)
    
    coordinateConstraints = (101, 103)
    
    robotQuadrant (mx, my) (px, py)
            | px > middleX && py < middleY = Just 1 -- upper right
            | px > middleX && py > middleY = Just 2 -- lower right
            | px < middleX && py > middleY = Just 3 -- lower left
            | px < middleX && py < middleY = Just 4 -- upper left
            | otherwise = Nothing
            where
                    middleX = (mx `div` 2)
                    middleY = (my `div` 2)
    
    countQuadrants (q1, q2, q3, q4) 1 = (succ q1, q2, q3, q4)
    countQuadrants (q1, q2, q3, q4) 2 = (q1, succ q2, q3, q4)
    countQuadrants (q1, q2, q3, q4) 3 = (q1, q2, succ q3, q4)
    countQuadrants (q1, q2, q3, q4) 4 = (q1, q2, q3, succ q4)
    
    part1 = map (flip moveRobot 100 >>> constrainCoordinates coordinateConstraints)
            >>> map (robotQuadrant coordinateConstraints)
            >>> Maybe.catMaybes
            >>> foldl (countQuadrants) (0, 0, 0, 0)
            >>> \ (a, b, c, d) -> a * b * c * d
    
    showMaybe (Just i) = head . show $ i
    showMaybe Nothing  = ' '
    
    buildRobotString robotMap = [ [ showMaybe (robotMap Map.!? (x, y))  | x <- [0..fst coordinateConstraints] ] | y <- [0..snd coordinateConstraints]]
    
    part2 rs t = map (flip moveRobot t >>> constrainCoordinates coordinateConstraints)
            >>> flip zip (repeat 1)
            >>> Map.fromListWith (+)
            >>> buildRobotString
            $ rs
    
    showConstellation (i, s) = do
            putStrLn (replicate 49 '#' ++ show i ++ replicate 49 '#')
            putStrLn $ s
    
    main = do
            f <- getContents
            let i = parse f
            print $ part1 i
    
            let constellations = map (id &&& (part2 i >>> List.intercalate "\n")) . filter ((== 86) . (`mod` 103)) $ [0..1000000]
            mapM_ showConstellation constellations
            print 7502
    
  • Gobbel2000@programming.dev
    link
    fedilink
    arrow-up
    2
    ·
    13 days ago

    Rust

    Part 2 was very surprising in that it had a very vague requirement: “Find christmas tree!”. But my idea of finding the first round where no robots overlap turned out to just work when printing the map, so that was nice. I’m glad I did not instead start looking for symmetric patterns, because the christmas tree map is not symmetric at all.

    Solution
    use euclid::default::*;
    use regex::Regex;
    
    fn parse(input: &str) -> Vec<(Point2D<i32>, Vector2D<i32>)> {
        let re = Regex::new(r"p=(\d+),(\d+) v=(-?\d+),(-?\d+)").unwrap();
        re.captures_iter(input)
            .map(|cap| {
                let (_, [p0, p1, v0, v1]) = cap.extract();
                (
                    Point2D::new(p0.parse().unwrap(), p1.parse().unwrap()),
                    Vector2D::new(v0.parse().unwrap(), v1.parse().unwrap()),
                )
            })
            .collect()
    }
    
    const ROOM: Size2D<i32> = Size2D::new(101, 103);
    const TIME: i32 = 100;
    
    fn part1(input: String) {
        let robots = parse(&input);
        let new_pos: Vec<Point2D<i32>> = robots.iter()
            .map(|&(p, v)| (p + v * TIME).rem_euclid(&ROOM))
            .collect();
    
        assert_eq!(ROOM.width % 2, 1);
        assert_eq!(ROOM.height % 2, 1);
        let mid_x = ROOM.width / 2;
        let mid_y = ROOM.height / 2;
        
        let mut q = [0u32; 4];
        for p in new_pos {
            use std::cmp::Ordering::*;
            match (p.x.cmp(&mid_x), p.y.cmp(&mid_y)) {
                (Less, Less) => q[0] += 1,
                (Greater, Less) => q[1] += 1,
                (Less, Greater) => q[2] += 1,
                (Greater, Greater) => q[3] += 1,
                _ => {}
            };
        }
        let prod = q[0] * q[1] * q[2] * q[3];
        println!("{prod}");
    }
    
    fn print_map(map: &[Vec<bool>]) {
        for row in map {
            for p in row {
                if *p { print!("#") } else { print!(".") }
            }
            println!();
        }
        println!();
    }
    
    
    fn part2(input: String) {
        let mut robots = parse(&input);
        let mut map = vec![vec![false; ROOM.width as usize]; ROOM.height as usize];
        for i in 1.. {
            let mut overlap = false;
            for (p, v) in &mut robots {
                *p = (*p + *v).rem_euclid(&ROOM);
                if map[p.y as usize][p.x as usize] {
                    // Found two robots on the same spot,
                    // which is used as a heuristic for detecting the easter egg.
                    overlap = true;
                } else {
                    map[p.y as usize][p.x as usize] = true;
                }
            }
            if !overlap {
                print_map(&map);
                println!("Round: {i}");
                break;
            }
            for row in &mut map {
                row.fill(false);
            }
        }
    }
    
    util::aoc_main!();
    

    Also on github

  • iAvicenna@lemmy.world
    link
    fedilink
    arrow-up
    2
    ·
    edit-2
    13 days ago

    Python

    I was very confused when I saw the second part. I was like “how the fuck am I supposed now how that shape will exactly look like?” I looked a couple of initial shapes all of which looked sufficiently random. So I constructed x and y marginal distributions of the robots to impose some non-symmetry conditions.

    My initial attempt was to just require maximum of x marginal should be at the centre but the sneaky bastards apparently framed the tree and tree was shorter than I expected (realised this only later) so that did not return any hits. I played around a bit and settled for: most of the maximums of x marginal should be near the centre and y marginal should be asymmetric. I still had to play around with the thresholds for these a bit because initially there was a couple of shapes (some repeating every 100 cycles or so) that satisfied my requirements (I had a part which actually outputted found shapes to a text file but then removed that in the final code). So it wasn’t %100 free of manual labour but I can say mostly…

    import numpy as np
    from pathlib import Path
    from collections import Counter
    cwd = Path(__file__).parent
    
    
    def parse_input(file_path):
      with file_path.open("r") as fp:
        robot_info = fp.readlines()
    
      _split = lambda x,p: [int(x.split(' ')[p].split(',')[0].split('=')[-1]),
                            int(x.split(' ')[p].split(',')[-1])]
    
      robot_pos = np.array([_split(x, 0) for x in robot_info])
      robot_vel = np.array([_split(x, 1) for x in robot_info])
    
      return robot_pos, robot_vel
    
    
    def solve_problem1(file_name, nrows, ncols, nmoves):
    
      robot_pos, robot_vel = parse_input(Path(cwd, file_name))
    
      final_pos = robot_pos + nmoves*robot_vel
      final_pos = [(x[0]%ncols, x[1]%nrows) for x in list(final_pos)]
    
      pos_counts = Counter(final_pos)
      coords = np.array(list(pos_counts.keys()))[:,::-1] #x is cols, y is rows
      coords = tuple(coords.T)
    
      grid = np.zeros((nrows, ncols), dtype=int)
      grid[coords] += list(pos_counts.values())
    
      counts = [np.sum(grid[:nrows>>1, :ncols>>1]),
                np.sum(grid[:nrows>>1, -(ncols>>1):]),
                np.sum(grid[-(nrows>>1):, :ncols>>1]),
                np.sum(grid[-(nrows>>1):, -(ncols>>1):])]
    
      return int(np.prod(counts))
    
    
    def solve_problem2(file_name, nrows, ncols):
    
      robot_pos, robot_vel = parse_input(Path(cwd, file_name))
    
      grid = np.zeros((nrows, ncols), dtype=object)
    
      # update all positions in a vectorised manner
      final_positions = robot_pos[None, :, :] + np.arange(1,10000)[:,None,None]*robot_vel[None,:,:]
      final_positions[:,:,0] = final_positions[:,:,0]%ncols
      final_positions[:,:,1] = final_positions[:,:,1]%nrows
    
      for s in range(final_positions.shape[0]):
        grid[:,:] = 0
    
        final_pos = map(tuple, tuple(final_positions[s,:,:]))
    
        pos_counts = Counter(final_pos)
        coords = np.array(list(pos_counts.keys()))[:,::-1] #x is cols, y is rows
        coords = tuple(coords.T)
    
        grid[coords] += list(pos_counts.values())
    
        xmarg = np.sum(grid, axis=0)
        tops = set(np.argsort(xmarg)[::-1][:10])
        p_near_center = len(tops.intersection(set(range((ncols>>1)-5, (ncols>>1) + 6))))/10
    
        ymarg = np.sum(grid, axis=1)
        ysym = 1 - abs(ymarg[:nrows>>1].sum() - ymarg[nrows>>1:].sum())/ymarg.sum()
    
        if p_near_center>0.5 and ysym<0.8:
          return s+1
    
  • ystael@beehaw.org
    link
    fedilink
    arrow-up
    2
    ·
    13 days ago

    J

    Had to actually render output! What is this “user interface” of which you speak?

    J doesn’t have meaningful identifiers for system interfaces built into the core language because why would you ever do that. It’s all routed through the “foreign conjunction” !:. There are aliases in the library, like fread, but if the documentation gives a list of all of them, I haven’t found it. We’re doing 1980 style system calls by number here. 1 !: 2 is write(), so x (1 !: 2) 2 writes x (which must be a list of characters) to stdout. (6 !: 3) y is sleep for y seconds.

    It’s inefficient to compute, but I looked for low spots in the mean distance between robots to find the pattern for part 2. The magic numbers (11 and 101) were derived by staring at the entire series for a little bit.

    load 'regex'
    data_file_name =: '14.data'
    raw =: cutopen fread data_file_name
    NB. a b sublist y gives elements [a..a+b) of y
    sublist =: ({~(+i.)/)~"1 _
    parse_line =: monad define
       match =: 'p=(-?[[:digit:]]+),(-?[[:digit:]]+) v=(-?[[:digit:]]+),(-?[[:digit:]]+)' rxmatch y
       2 2 $ ". y sublist~ }. match
    )
    initial_state =: parse_line"1 > raw
    'positions velocities' =: ({."2 ; {:"2) initial_state
    steps =: 100
    size =: 101 103
    step =: (size &amp; |) @: +
    travel =: step (steps &amp; *)
    quadrant =: (> &amp; (&lt;. size % 2)) - (&lt; &amp; (&lt;. size % 2))
    final_quadrants =: quadrant"1 @: travel"1
    quadrant_ids =: 4 2 $ 1 1 _1 1 1 _1 _1 _1
    result1 =: */ +/"1 quadrant_ids -:"1/ positions final_quadrants velocities
    
    render =: monad define
       |: 'O' (&lt;"1 y)} size $ '.'
    )
    pair_distances =: monad : 'y (| @: j./ @: -/"1)/ y'
    loop =: dyad define
       positions =. positions step"1 (velocities * x)
       for_i. i. 1000 do.
          time_number =. x + i * y
          mean_distance =. (+/ % #) , pair_distances positions
          if. mean_distance &lt; 50 do.
             (render positions) (1!:2) 2
             (": time_number, mean_distance) (1!:2) 2
             (6!:3) 1
          end.
          if. mean_distance &lt; 35 do. break. end.
          positions =. positions step"1 (velocities * y)
       end.
       time_number
    
    result2 =: 11 loop 101
    
  • mykl@lemmy.world
    link
    fedilink
    arrow-up
    2
    ·
    edit-2
    12 days ago

    Dart

    Took far too long to work out a really stupidly simple method of finding the tree – I ended up just checking the first height*width time slots to find when the most bots appear in any given row/column. The framing around the Christmas tree accidentally made this foolproof :-). Add a bit of Chinese Remainder Theorem and we’re golden. (edit: forgot to mention that it’s Dart code)

    import 'dart:math';
    import 'package:collection/collection.dart';
    import 'package:more/more.dart';
    
    List<List<Point<num>>> getBots(List<String> lines) {
      var bots = lines
          .map((e) => RegExp(r'(-?\d+)')
              .allMatches(e)
              .map((m) => int.parse(m.group(0)!))
              .toList())
          .map((p) => [Point<num>(p[0], p[1]), Point<num>(p[2], p[3])])
          .toList();
      return bots;
    }
    
    // Solve system of congruences using the Chinese Remainder Theorem
    int crt(int r1, int m1, int r2, int m2) {
      int inv = m1.modInverse(m2);
      int solution = (r1 + m1 * ((r2 - r1) % m2) * inv) % (m1 * m2);
      return (solution + (m1 * m2)) % (m1 * m2); // Ensure the result is positive
    }
    
    void moveBy(List<List<Point<num>>> bots, int t, int w, int h) {
      for (var b in bots) {
        b.first += b.last * t;
        b.first = Point(b.first.x % w, b.first.y % h);
      }
    }
    
    part1(List<String> lines, [width = 11, height = 7]) {
      var bots = getBots(lines);
      moveBy(bots, 100, width, height);
      var w = width ~/ 2, h = height ~/ 2;
      var quads = Multiset.fromIterable(
          bots.map((b) => (b.first.x.compareTo(w), b.first.y.compareTo(h))));
      return [(-1, -1), (-1, 1), (1, -1), (1, 1)]
          .map((k) => quads[k])
          .reduce((s, t) => s * t);
    }
    
    part2(List<String> lines, [width = 101, height = 103]) {
      var bots = getBots(lines);
      var t = 0;
      int rmax = 0, cmax = 0, rt = 0, ct = 0;
      while (t < width * height) {
        t += 1;
        moveBy(bots, 1, width, height);
        var r = Multiset.fromIterable(bots.map((e) => e.first.x)).counts.max;
        var c = Multiset.fromIterable(bots.map((e) => e.first.y)).counts.max;
        if (r > rmax) (rmax, rt) = (r, t);
        if (c > cmax) (cmax, ct) = (c, t);
      }
      t = crt(rt, width, ct, height);
      bots = getBots(lines);
      moveBy(bots, t, width, height);
      // printGrid(height, width, bots);
      return t;
    }
    
  • hades@lemm.ee
    link
    fedilink
    arrow-up
    1
    ·
    11 days ago

    C#

    using System.Text.RegularExpressions;
    
    namespace aoc24;
    
    [ForDay(14)]
    public partial class Day14 : Solver
    {
      [GeneratedRegex(@"^p=(-?\d+),(-?\d+) v=(-?\d+),(-?\d+)$")]
      private static partial Regex LineRe();
    
      private List<(int X, int Y, int Vx, int Vy)> robots = [];
    
      private int width = 101, height = 103;
    
      public void Presolve(string input) {
        var data = input.Trim();
        foreach (var line in data.Split("\n")) {
          if (LineRe().Match(line) is not { Success: true } match ) {
            throw new InvalidDataException($"parse error: ${line}");
          }
          robots.Add((
            int.Parse(match.Groups[1].Value),
            int.Parse(match.Groups[2].Value),
            int.Parse(match.Groups[3].Value),
            int.Parse(match.Groups[4].Value)
            ));
        }
      }
    
      public string SolveFirst() {
        Dictionary<(bool, bool), int> quadrants = [];
        foreach (var robot in robots) {
          int x = (robot.X + 100 * (robot.Vx > 0 ? robot.Vx : robot.Vx + width)) % width;
          int y = (robot.Y + 100 * (robot.Vy > 0 ? robot.Vy : robot.Vy + height)) % height;
          if (x == width/2 || y == height/2) continue;
          var q = (x < width / 2, y < height / 2);
          quadrants[q] = quadrants.GetValueOrDefault(q, 0) + 1;
        }
        return quadrants.Values.Aggregate((a, b) => a * b).ToString();
      }
    
      private int CountAdjacentRobots(HashSet<(int, int)> all_robots, (int, int) this_robot) {
        var (x, y) = this_robot;
        int count = 0;
        for (int ax = x - 1; all_robots.Contains((ax, y)); ax--) count++;
        for (int ax = x + 1; all_robots.Contains((ax, y)); ax++) count++;
        for (int ay = y - 1; all_robots.Contains((x, ay)); ay--) count++;
        for (int ay = y + 1; all_robots.Contains((x, ay)); ay++) count++;
        return count;
      }
    
      public string SolveSecond() {
        for (int i = 0; i < int.MaxValue; ++i) {
          HashSet<(int, int)> end_positions = [];
          foreach (var robot in robots) {
            int x = (robot.X + i * (robot.Vx > 0 ? robot.Vx : robot.Vx + width)) % width;
            int y = (robot.Y + i * (robot.Vy > 0 ? robot.Vy : robot.Vy + height)) % height;
            end_positions.Add((x, y));
          }
          if (end_positions.Select(r => CountAdjacentRobots(end_positions, r)).Max() > 10) {
            return i.ToString();
          }
        }
        throw new ArgumentException();
      }
    }
    
  • Quant@programming.dev
    link
    fedilink
    English
    arrow-up
    1
    ·
    edit-2
    8 days ago

    Uiua

    Ok, so part one wasn’t too hard, and since uiua also takes negative values for accessing arrays, I didn’t even have to care about converting my modulus results (though I did later for part two).
    I’m a bit conflicted about the way I detected the quadrants the robots are in, or rather the way the creation of the mask-array happens. I basically made a 11x7 field of 0’s, then picked out each quadrant and added 1-4 respectively. Uiua’s group () function then takes care of putting all the robots in separate arrays for each quadrant. Simple.

    For part two, I didn’t even think long before I came here to see other’s approaches. The idea to look for the first occurrence where no robots’ positions overlapped was my starting point for what follows.

    Example input stuff

    Run with example input here

    $ p=0,4 v=3,-3
    $ p=6,3 v=-1,-3
    $ p=10,3 v=-1,2
    $ p=2,0 v=2,-1
    $ p=0,0 v=1,3
    $ p=3,0 v=-2,-2
    $ p=7,6 v=-1,-3
    $ p=3,0 v=-1,-2
    $ p=9,3 v=2,3
    $ p=7,3 v=-1,2
    $ p=2,4 v=2,-3
    $ p=9,5 v=-3,-3
    .
    PartOne ← (
      # &rs ∞ &fo "input-14.txt"
      ⊜(↯2_2⋕regex"-?\\d+")≠@\n.
      ≡(⍜⌵(◿11_7)+°⊟⍜⊡₁×₁₀₀)
      ↯⟜(▽×°⊟)7_11 0
      ⍜↙₃(⍜≡↙₅+₁⍜≡↘₆+₂)
      ⍜↘₄(⍜≡↙₅+₃⍜≡↘₆+₄)
      /×≡◇⧻⊕□-₁⊸(⊡:)⍉
    )
    
    PartTwo ← (
      # &rs ∞ &fo "input-14.txt"
      ⊜(↯2_2⋕regex"-?\\d+")≠@\n.
      0 # number of seconds to start at
      0_0
      ⍢(◡(≡(⍜⌵(◿11_7)+°⊟⍜⊡₁×):)◌
        ◿[11_7]≡+[11_7]
        ⊙+₁
      | ≠⊙(⧻◴)⧻.)
      ⊙◌◌
      -₁
    )
    
    &p "Day 14:"
    &pf "Part 1: "
    &p PartOne
    &pf "Part 2: "
    &p PartTwo
    

    Now on to the more layered approach of how I got my solution.

    In my case, there’s two occasions of non-overlapping positions before the christmas tree appears.
    I had some fun trying to get those frames and kept messing up with going back and forth between 7x11 vs 103x101 fields, often forgetting to adjust the modulus and other parts, so that was great.

    In the end, I uploaded my input to the online uiua pad to make visualizing possible frames easier since uiua is able to output media if the arrays match a defined format.

    Try it out yourself with your input
    1. Open the uiua pad with code here
    2. Replace the 0 in the first line with your solution for part two
    3. If necessary, change the name of the file containing your input
    4. Drag a file containing your input onto the pad to upload it and run the code
    5. An image should be displayed

    I used this code to find the occurrence of non-overlapping positions (running this locally):

    &rs ∞ &fo "input-14.txt"
    ⊜(↯2_2⋕regex"-?\\d+")≠@\n.
    0 # number of seconds to start at
    0_0
    ⍢(◡(≡(⍜⌵(◿101_103)+°⊟⍜⊡₁×):)◌
      ◿[101_103]≡+[101_103]
      ⊙+₁
    | ≠⊙(⧻◴)⧻.)
    ⊙◌◌
    -₁
    

    Whenever a new case was found, I put the result into the code in the online pad to check the generated image, and finally got this at the third try:

  • LeixB@lemmy.world
    link
    fedilink
    arrow-up
    1
    ·
    13 days ago

    Haskell

    Spent a lot of time trying to find symmetric quadrants. In the end made an interactive visualization and found that a weird pattern appeared on iterations (27 + 101k) and (75 + 103k’). Put those congruences in an online Chinese remainder theorem calculator and go to the answer: x8006 (mod 101*103)

    import Data.Bifunctor
    import Data.Char
    import qualified Data.Set as S
    import Data.Functor
    import Data.List
    import Control.Monad
    import Text.ParserCombinators.ReadP
    import Data.IORef
    
    bounds = (101, 103)
    
    parseInt :: ReadP Int
    parseInt = (*) <$> option 1 (char '-' $> (-1)) <*> (read <$> munch1 isDigit)
    parseTuple = (,) <$> parseInt <*> (char ',' *> parseInt)
    parseRow = (,) <$> (string "p=" *> parseTuple) <*> (string " v=" *> parseTuple)
    parse = fst . last . readP_to_S (endBy parseRow (char '\n'))
    
    move t (x, y) (vx, vy) = bimap (mod (x + vx * t)) (mod (y + vy * t)) bounds
    
    getQuadrant :: (Int, Int) -> Int
    getQuadrant (x, y)
        | x == mx || y == my = 0
        | otherwise = case (x > mx, y > my) of
            (True, True) -> 1
            (True, False) -> 2
            (False, True) -> 3
            (False, False) -> 4
      where
        (mx, my) = bimap (`div` 2) (`div` 2) bounds
    
    step (x, y) (vx, vy) = (,(vx, vy)) $ bimap (mod (x + vx)) (mod (y + vy)) bounds
    
    main = do
        p <- parse <$> readFile "input14"
    
        print . product . fmap length . group . sort . filter (/=0) . fmap (getQuadrant . uncurry (move 100)) $ p
    
        let l = iterate (fmap (uncurry step)) p
    
        current <- newIORef 0
        actions <- lines <$> getContents
        forM_ actions $ \a -> do
            case a of
                "" -> modifyIORef current (+1)
                "+" -> modifyIORef current (+1)
                "-" -> modifyIORef current (subtract 1)
                n -> writeIORef current (read n)
            pos <- readIORef current
            putStr "\ESC[2J" -- clear screen
            print pos
            visualize $ fst <$> l !! pos
    
    visualize :: [(Int, Int)] -> IO ()
    visualize pos = do
        let p = S.fromList pos
        forM_ [1..(snd bounds)] $ \y -> do
            forM_ [1..(fst bounds)] $ \x -> do
                putChar $ if S.member (x, y) p then '*' else '.'
            putChar '\n'